

Development of Ultrananocrystalline Diamond (UNCD) Coatings

John N. Hryn Energy Systems Division

John A. Carlisle

Materials Science Division & Center for Nanoscale

Materials

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Project Goal

- Develop applications for UNCD to achieve significant energy savings in IOF industries
 - Focus on first application:
 - Development of UNCD Coatings for SiC multipurpose mechanical pump seals

Participants

Argonne National Laboratory

- John Hryn
- John Carlisle
- Dieter Gruen
- Orlando Auciello
- Michael Pellin
- Ali Erdemir
- Greg Krumdick
- Jeff Elam

Industry Partners

- Advanced Diamond Technologies
- John Crane, Inc.
- Flowserve
- Morgan AM&T
- Coorstek Amazing Solutions
- Innovative Plasma Systems GmbH (IPLAS)

University Collaborators

- Northwestern University
- University of Illinois at Chicago

Technical Merit

UNCD addresses IMF Core Research Areas

- Wear, erosion, and corrosion resistance
 - UNCD is low friction, chemically inert, hard as natural diamond
- Processing-properties relationships
 - Development of large-areas plasmas, processing techniques
- Materials for sensors
 - Electrochemical and UNCD MEMS-based (automotive, biomedical)
- Materials chemistry
 - Novel Ar/CH₄ plasmas, C₂-dimer diamond growth
- Surfaces, interfaces, and joining
 - Optimization of film adhesion, MEMS material integration

Project Objectives

- Develop fundamental understanding of UNCD growth processes
 - Microwave plasma CVD process
 - Seeding of substrates
- Develop a technological base for UNCD applications
- Demonstrate UNCD coatings in industrial applications
 - SiC seal coatings for multipurpose mechanical pumps
 - Electrochemical sensors, MEMS, extrusion dies, etc.

Technical Progress

- Delamination issue resolved
 - Related to initial surface roughness
- Seeding process optimized
- Simultaneous coating of multiple seals
 - Critical for commercialization plan
- Successful coatings of various substrates
 - alpha-SiC, WC, CDC (chlorination of SiC)
- Coated seals characterized and tested in pumps at Argonne and at industry partners

Technical Outlook

• Plan:

- Coat multiple seals simultaneously in large IPLAS reactor, measure waviness, meet spec.
 - Resolve issue of carbon nanotube growth on SiC
- Testing of seals by industrial partners in high-value-added application
 - High pressure, dry, hard-on-hard conditions
 - Quantify energy, economic benefits
- Field tests by customers of industrial partners (end-users) in IOF industries

Market Potential

- 1,000,000 chemical process pumps in U.S.
 - Assuming 80% market penetration
- Initial introduction to chemical pump seals
 - High-value, high-performance application
- Move to multipurpose and automotive pump applications in many IOFs
 - Main competition is in uncoated SiC seals

Office of Science U.S. Department of Energy

Commercialization

- Advanced Diamond Technologies
 - Argonne-initiated start-up company
 - Business plan established
 - Toll processor for seal manufacturers
 - Agreements in principle reached with partners
- Commercial demonstration of UNCD coating on SiC seals at ADT:
 3-4 years
 - Subject to available resources
 - Investors, stakeholders, DOE-IOF teams

Benefits (as SiC seal coating)

- 1,000,000 chemical process pumps in U.S.
 - Assuming 80% market penetration
- 20% energy savings lower friction losses
 - Six-fold decrease in pump shaft torque
 - 236 trillion Btu savings cumulative by 2020
- Substantial economic benefit
 - \$3.5 billion savings cumulative by 2020
- Environmental benefits
 - 4,700,000 TCE reduction cumulative by 2020

Technical Summary

- Delamination issue resolved for 3" reaction-bonded seals
 - 3" Seals extensively tested in test pump at ANL
 - Films that don't delaminate don't wear out (so far)
- Coating of multiple seals demonstrated
- Coating of different types of seal demonstrated
 - Reaction bonded SiC, sintered α -SiC, WC
 - 1" automotive, 2" & 3" engineered seals
- Carbide-derived carbon facility designed, built, commissioned
 - UNCD successfully grown on CDC-treated SiC seal
- Rotating Seal Manipulator installed and commissioned

Ultrananocrystalline Diamond

Ar/CH₄ plasma

- C₂ Dimers will naturally form diamond-bonded carbon (sp³-bonded)
- Hard has natural diamond (97 GPa), Young's Modulas ~980 GPa
- Tougher that microcrystalline diamond (fracture strength ~4 GPa)
- Smooth, low friction as deposited (~20 nm rms)

Nanoscale Structure of UNCD

UNCD Grain Boundaries

- 3-5 nm Grains
- High-Energy Grain Boundaries
- UNCD isn't pure diamond
 - Self-assembled
 Nanocomposite of diamond and graphite

New iplas Microwave Plasma System

- New Plasma Chemistries
 - B, Al, P, etc.
- Higher Pressures
 - •Faster deposition (~.5 µm/hr)
- Larger Area
 - 100 mm wafers, UNCD-MEMS
 - 2" RO SiC Pump Seals
 - •Scalable!

Current Work & Industrial Collaborations

Biosensors

New MPCVD Reactor (iplas)

Artificial Retinas (Second Sight)

Enlarged area

Implant

Laser or RF Eyeball

Ganglion Cells

Tribomechanical
Coatings
(John Crane,
CoorsTek, etc.)

Fuel Cells (Delphi Auto.)

UNCD

3" reaction-bonded SiC Chemical Pump Seals with

- Milestone
 - Coat larger 3" SiC seals
 - Solve delamination problem
- 3" reaction bonded SiC seals were pretreated to have different surface roughnesses
- Seals were coated with ~1 mm UNCD films using 4 hour process at 850°C
- optical profilometry and Raman spectroscopy performed before and after wear-testing

- Graphite Counterface
- Coated SiC Seal
- Uncoated SiC Seal
- Graphite Counterface
- Seals are tested in pairs: coated and uncoated
- Each seal rotates against a graphite counterface at 3000 RPM
- After run-in period, pressure = 100 PSI
- Each day, fixture is disassembled and seals are inspected for wear

Profilometry of 3" seals after testing

Seal #2 (0.06 µm roughness) after 1 day of testing

Severe
 delamination
 observed at
 areas
 contacting
 graphite
 counterface

Seal #5 (0.27 µm roughness) after 10 days of testing

NO Delamination!

Compare coated versus uncoated seals

- High initial surface roughness critically improves UNCD adhesion
- UNCD films that don't fail dramatically improve seal lifetime
- Torque reduced by factor of 6
 - 20% energy savings

Office of Science U.S. Department of Energy

α -SiC automotive seals

Cross-section SEM of UNCD film on seal

Two Milestones achieved:

- Coating of insulating seal
- Coating of multiple seals simultaneously

UNCD coatings meet uniformity and roughness specs

Carbide Derived Carbon (CDC) facility at ANL with

Raman data

- Milestone: Use CDC as seed layer for UNCD growth
 - Improve adhesion
- **CDC: Selective Etching of** Silicon from SiC in Cl₂/H₂
- Film structure, bonding (diamond vs. graphite) VERY sensitive to ratio of gas
- CDC films studied by XPS, **SEM, RAMAN**
- Two UNCD films successfully grown on CDC treated substrates

Future Work

- Coat <u>large</u> numbers of seals for prototype testing at industrial facilities
 - Film uniformity, waviness, smoothness, reproducibility of process
 - Friction, dry-running, thermal shock, etc.
 - Long-term tests
 - Verification of value-added of UNCD coated seals
- Develop UNCD process for new seals
 - New materials
 - New sizes/types/applications (high volume, engineered, gas seals, etc.)
- Investigate CDC as seed layer for UNCD.
 - Adhesion tests
 - Prototype testing

Hurdles to Overcome

- Need NEW 11" IPLAS microwave plasma system
 - Needed to meet FY04 milestones/deliverables
 - Needed to coat the numbers of seals for prototype testing at industrial facilities
 - Time-share available on upgraded 11" reactor (OBER funding)
- Seal Materials vary a LOT!
 - α-SiC at Crane NOT the same as Morgan, CoorsTek, etc.
 - Traces of impurities (especially Iron) a problem
 - Need to develop process for each seal type?
- Delamination may be an issue for new material types

Carbon — Nanotubes!

Commercialization Pathway

- Advanced Diamond Technologies, Inc. (www.thindiamond.com)
 - founded by ANL & Uni. Of Chicago, to commercialize UNCD technology for all applications (Seals, MEMS, sensors, etc.)
- Broader industrial participant base established
 - John Crane, CoorsTek, Morgan AM&T, Advanced Diamond Technologies, Inc., Innovative Plasma Systems (IPLAS) GmbH
 - Types of seals, application areas driven by industrial partners
 - Testing of prototypes to be done at industrial facilities
 - \$6.2M proposal written to OIT to scale-up and commercialize UNCD coatings on seals.
- Economic analysis performed by ANL/ADT/Crane
 - Need 11" reactor for engineered seals, 27" for high-volume

